Interestingness Measures for Multi-Level Association Rules
نویسندگان
چکیده
Association rule mining is one technique that is widely used when querying databases, especially those that are transactional, in order to obtain useful associations or correlations among sets of items. Much work has been done focusing on efficiency, effectiveness and redundancy. There has also been a focusing on the quality of rules from single level datasets with many interestingness measures proposed. However, with multi-level datasets now being common there is a lack of interestingness measures developed for multi-level and cross-level rules. Single level measures do not take into account the hierarchy found in a multi-level dataset. This leaves the Support-Confidence approach, which does not consider the hierarchy anyway and has other drawbacks, as one of the few measures available. In this paper we propose two approaches which measure multi-level association rules to help evaluate their interestingness. These measures of diversity and peculiarity can be used to help identify those rules from multi-level datasets that are potentially useful.
منابع مشابه
Numeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm
Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...
متن کاملMulti-Level Mining and Visualization of Informative Association Rules
Recently, there has been an increasing interest in applying association rule mining on data warehouses to identify trends and patterns that exist in the historical data present in large data warehouses. These warehouses have a complex underlying multidimensional structure and the application of traditional rule mining algorithms becomes hard. In this paper, we review and critically evaluate the...
متن کاملExtraction of Interesting Association Rules Using Genetic Algorithms
The process of discovering interesting and unexpected rules from large data sets is known as association rule mining. The typical approach is to make strong simplifying assumptions about the form of the rules, and limit the measure of rule quality to simple properties such as support or confidence. Support and confidence limit the level of interestingness of the generated rules. Comprehensibili...
متن کاملSelecting a Right Interestingness Measure for Rare Association Rules
In the literature, the properties of several interestingness measures have been analyzed and a framework has been proposed for selecting a right interestingness measure for extracting association rules. As rare association rules contain useful knowledge, researchers are making efforts to investigate efficient approaches to extract the same. In this paper, we make an effort to analyze the proper...
متن کاملDefining Interestingness for Association Rules
Interestingness in Association Rules has been a major topic of research in the past decade. The reason is that the strength of association rules, i.e. its ability to discover ALL patterns given some thresholds on support and confidence, is also its weakness. Indeed, a typical association rules analysis on real data often results in hundreds or thousands of patterns creating a data mining proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014